Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3186, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622114

RESUMO

Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Here, our cryo-EM structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirms that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses reveal that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ may be detrimental.


Assuntos
Fator Rho , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator Rho/química , Transcrição Gênica , RNA/genética , Sítios de Ligação , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética
2.
Nat Commun ; 15(1): 3193, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609371

RESUMO

RNA polymerases must transit through protein roadblocks to produce full-length transcripts. Here we report real-time measurements of Escherichia coli RNA polymerase passing through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNA polymerase passage through lac repressor protein bound to natural binding sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of the transcript cleavage factor GreA, which rescues backtracked RNA polymerase. In stark contrast, opposing forces promoted passage when the rate of RNA polymerase backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNA polymerase may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNA polymerase to break protein-DNA contacts that hold RNA polymerase back during promoter escape and RNA chain elongation. This may facilitate productive transcription in vivo.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/genética , Sítios de Ligação , Escherichia coli/genética , Repressores Lac
3.
Nat Commun ; 15(1): 3040, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589445

RESUMO

RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a ß-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.


Assuntos
Proteínas de Escherichia coli , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transativadores/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , DNA
4.
Curr Opin Struct Biol ; 86: 102807, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537533

RESUMO

In the last two decades, our existing notion that most foldable proteins have a unique native state has been challenged by the discovery of metamorphic proteins, which reversibly interconvert between multiple, sometimes highly dissimilar, native states. As the number of known metamorphic proteins increases, several computational and experimental strategies have emerged for gaining insights about their refolding processes and identifying unknown metamorphic proteins amongst the known proteome. In this review, we describe the current advances in biophysically and functionally ascertaining the structural interconversions of metamorphic proteins and how coevolution can be harnessed to identify novel metamorphic proteins from sequence information. We also discuss the challenges and ongoing efforts in using artificial intelligence-based protein structure prediction methods to discover metamorphic proteins and predict their corresponding three-dimensional structures.

5.
Proteins ; 92(3): 418-426, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37929701

RESUMO

Middle East respiratory syndrome coronavirus (MERS CoV) and severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) are RNA viruses from the Betacoronavirus family that cause serious respiratory illness in humans. One of the conserved non-structural proteins encoded for by the coronavirus family is non-structural protein 9 (nsp9). Nsp9 plays an important role in the RNA capping process of the viral genome, where it is covalently linked to viral RNA (known as RNAylation) by the conserved viral polymerase, nsp12. Nsp9 also directly binds to RNA; we have recently revealed a distinct RNA recognition interface in the SARS CoV-2 nsp9 by using a combination of nuclear magnetic resonance spectroscopy and biolayer interferometry. In this study, we have utilized a similar methodology to determine a structural model of RNA binding of the related MERS CoV. Based on these data, we uncover important similarities and differences to SARS CoV-2 nsp9 and other coronavirus nsp9 proteins. Our findings that replacing key RNA binding residues in MERS CoV nsp9 affects RNAylation efficiency indicate that recognition of RNA may play a role in the capping process of the virus.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , RNA/metabolismo
6.
Genes (Basel) ; 14(11)2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-38002987

RESUMO

Plasmids mediate gene exchange across taxonomic barriers through conjugation, shaping bacterial evolution for billions of years. While plasmid mobility can be harnessed for genetic engineering and drug-delivery applications, rapid plasmid-mediated spread of resistance genes has rendered most clinical antibiotics useless. To solve this urgent and growing problem, we must understand how plasmids spread across bacterial communities. Here, we applied machine-learning models to identify features that are important for extending the plasmid host range. We assembled an up-to-date dataset of more than thirty thousand bacterial plasmids, separated them into 1125 clusters, and assigned each cluster a distribution possibility score, taking into account the host distribution of each taxonomic rank and the sampling bias of the existing sequencing data. Using this score and an optimized plasmid feature pool, we built a model stack consisting of DecisionTreeRegressor, EvoTreeRegressor, and LGBMRegressor as base models and LinearRegressor as a meta-learner. Our mathematical modeling revealed that sequence brevity is the most important determinant for plasmid spread, followed by P-loop NTPases, mobility factors, and ß-lactamases. Ours and other recent results suggest that small plasmids may broaden their range by evading host defenses and using alternative modes of transfer instead of autonomous conjugation.


Assuntos
Bactérias , Especificidade de Hospedeiro , Plasmídeos/genética , Bactérias/genética , beta-Lactamases/genética , Aprendizado de Máquina
7.
bioRxiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693585

RESUMO

Transcription termination factor ρ is a hexameric, RNA-dependent NTPase that can adopt active closed-ring and inactive open-ring conformations. The Sm-like protein Rof, a homolog of the RNA chaperone Hfq, inhibits ρ-dependent termination in vivo but recapitulation of this activity in vitro has proven difficult and the precise mode of Rof action is presently unknown. Our electron microscopic structures of ρ-Rof and ρ-RNA complexes show that Rof undergoes pronounced conformational changes to bind ρ at the protomer interfaces, undercutting ρ conformational dynamics associated with ring closure and occluding extended primary RNA-binding sites that are also part of interfaces between ρ and RNA polymerase. Consistently, Rof impedes ρ ring closure, ρ-RNA interactions, and ρ association with transcription elongation complexes. Structure-guided mutagenesis coupled with functional assays confirmed that the observed ρ-Rof interface is required for Rof-mediated inhibition of cell growth and ρ-termination in vitro. Bioinformatic analyses revealed that Rof is restricted to Pseudomonadota and that the ρ-Rof interface is conserved. Genomic contexts of rof differ between Enterobacteriaceae and Vibrionaceae, suggesting distinct modes of Rof regulation. We hypothesize that Rof and other cellular anti-terminators silence ρ under diverse, but yet to be identified, stress conditions when unrestrained transcription termination by ρ would be lethal.

8.
bioRxiv ; 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37645988

RESUMO

Bacterial RNA helicase ρ is a genome sentinel that terminates synthesis of damaged and junk RNAs that are not translated by the ribosome. Co-transcriptional RNA surveillance by ρ is essential for quality control of the transcriptome during optimal growth. However, it is unclear how bacteria protect their RNAs from overzealous ρ during dormancy or stress, conditions common in natural habitats. Here we used cryogenic electron microscopy, biochemical, and genetic approaches to show that residue substitutions, ADP, or ppGpp promote hyper-oligomerization of Escherichia coli ρ. Our results demonstrate that nucleotides bound at subunit interfaces control ρ switching from active hexamers to inactive higher-order oligomers and extended filaments. Polymers formed upon exposure to antibiotics or ppGpp disassemble when stress is relieved, thereby directly linking termination activity to cellular physiology. Inactivation of ρ through hyper-oligomerization is a regulatory strategy shared by RNA polymerases, ribosomes, and metabolic enzymes across all life.

9.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-36711567

RESUMO

RNA polymerases (RNAPs) must transit through protein roadblocks to produce full-length RNAs. Here we report real-time measurements of Escherichia coli (E. coli) RNAP passage through different barriers. As intuitively expected, assisting forces facilitated, and opposing forces hindered, RNAP passage through LacI bound to natural operator sites. Force-dependent differences were significant at magnitudes as low as 0.2 pN and were abolished in the presence of GreA, which rescues backtracked RNAP. In stark contrast, opposing forces promoted passage when the rate of backtracking was comparable to, or faster than the rate of dissociation of the roadblock, particularly in the presence of GreA. Our experiments and simulations indicate that RNAP may transit after roadblocks dissociate, or undergo cycles of backtracking, recovery, and ramming into roadblocks to pass through. We propose that such reciprocating motion also enables RNAP to break protein-DNA contacts holding RNAP back during promoter escape and RNA chain elongation, facilitating productive transcription in vivo.

10.
Comput Struct Biotechnol J ; 20: 5824-5837, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36382197

RESUMO

Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-ß domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein. The dramatic nature of RfaH structural transformation and the richness of its evolutionary history makes for an excellent model for studying how metamorphic proteins switch folds. Here, we summarize the structural and functional evidence that sparked the discovery of RfaH as a metamorphic protein, the experimental and computational approaches that enabled the description of the molecular mechanism and refolding pathways of its structural interconversion, and the ongoing efforts to find signatures and general properties to ultimately describe the protein metamorphome.

11.
Nucleic Acids Res ; 50(11): 6384-6397, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35670666

RESUMO

In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.


Assuntos
Proteínas de Escherichia coli , Fatores de Alongamento de Peptídeos , Transativadores , Transcrição Gênica , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/metabolismo , RNA/metabolismo , Transativadores/metabolismo , Fatores de Elongação da Transcrição/metabolismo
12.
Molecules ; 27(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35744940

RESUMO

The severity of the COVID-19 pandemic and the pace of its global spread have motivated researchers to opt for repurposing existing drugs against SARS-CoV-2 rather than discover or develop novel ones. For reasons of speed, throughput, and cost-effectiveness, virtual screening campaigns, relying heavily on in silico docking, have dominated published reports. A particular focus as a drug target has been the principal active site (i.e., RNA synthesis) of RNA-dependent RNA polymerase (RdRp), despite the existence of a second, and also indispensable, active site in the same enzyme. Here we report the results of our experimental interrogation of several small-molecule inhibitors, including natural products proposed to be effective by in silico studies. Notably, we find that two antibiotics in clinical use, fidaxomicin and rifabutin, inhibit RNA synthesis by SARS-CoV-2 RdRp in vitro and inhibit viral replication in cell culture. However, our mutagenesis studies contradict the binding sites predicted computationally. We discuss the implications of these and other findings for computational studies predicting the binding of ligands to large and flexible protein complexes and therefore for drug discovery or repurposing efforts utilizing such studies. Finally, we suggest several improvements on such efforts ongoing against SARS-CoV-2 and future pathogens as they arise.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/química , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Pandemias , RNA , RNA Polimerase Dependente de RNA , SARS-CoV-2
13.
Cell Rep ; 39(4): 110749, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35476989

RESUMO

Pausing by bacterial RNA polymerase (RNAp) is vital in the recruitment of regulatory factors, RNA folding, and coupled translation. While backtracking and intra-structural isomerization have been proposed to trigger pausing, our mechanistic understanding of backtrack-associated pauses and catalytic recovery remains incomplete. Using high-throughput magnetic tweezers, we examine the Escherichia coli RNAp transcription dynamics over a wide range of forces and NTP concentrations. Dwell-time analysis and stochastic modeling identify, in addition to a short-lived elemental pause, two distinct long-lived backtrack pause states differing in recovery rates. We identify two stochastic sources of transcription heterogeneity: alterations in short-pause frequency that underlies elongation-rate switching, and variations in RNA cleavage rates in long-lived backtrack states. Together with effects of force and Gre factors, we demonstrate that recovery from deep backtracks is governed by intrinsic RNA cleavage rather than diffusional Brownian dynamics. We introduce a consensus mechanistic model that unifies our findings with prior models.


Assuntos
RNA Polimerases Dirigidas por DNA , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Bacteriano
14.
J Bacteriol ; 204(4): e0059921, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35258322

RESUMO

Nucleoid-associated proteins (NAPs) silence xenogenes by blocking RNA polymerase binding to promoters and hindering transcript elongation. In Escherichia coli, H-NS and its homolog SptA interact with YmoA proteins Hha and YdgT to assemble nucleoprotein filaments that facilitate transcription termination by Rho, which acts in synergy with NusG. Countersilencing during initiation is facilitated by proteins that exclude NAPs from promoter regions, but auxiliary factors that alleviate silencing during elongation are not known. A specialized NusG paralog, RfaH, activates lipopolysaccharide core biosynthesis operons, enabling survival in the presence of detergents and antibiotics. RfaH strongly inhibits Rho-dependent termination by reducing RNA polymerase pausing, promoting translation, and competing with NusG. We hypothesize that RfaH also acts as a countersilencer of NAP/YmoA filaments. We show that deletions of hns and hha+ydgT suppress the growth defects of ΔrfaH by alleviating Rho-mediated polarity within the waa operon. The absence of YmoA proteins exacerbates cellular defects caused by reduced Rho levels or Rho inhibition by bicyclomycin but has negligible effects at a strong model Rho-dependent terminator. Our findings that the distribution of Hha and RfaH homologs is strongly correlated supports a model in which they comprise a silencing/countersilencing pair that controls expression of chromosomal and plasmid-encoded xenogenes. IMPORTANCE Horizontally acquired DNA drives bacterial evolution, but its unregulated expression may harm the recipient. Xenogeneic silencers recognize foreign genes and inhibit their transcription. However, some xenogenes, such as those encoding lipo- and exopolysaccharides, confer resistance to antibiotics, bile salts, and detergents, necessitating the existence of countersilencing fitness mechanisms. Here, we present evidence that Escherichia coli antiterminator RfaH alleviates silencing of the chromosomal waa operon and propose that plasmid-encoded RfaH homologs promote dissemination of antibiotic resistance genes through conjugation.


Assuntos
Proteínas de Escherichia coli , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Detergentes/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fatores de Alongamento de Peptídeos/química , Transativadores/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Nucleic Acids Res ; 50(5): 2826-2835, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188572

RESUMO

Some proteins, like the lac repressor (LacI), mediate long-range loops that alter DNA topology and create torsional barriers. During transcription, RNA polymerase generates supercoiling that may facilitate passage through such barriers. We monitored E. coli RNA polymerase progress along templates in conditions that prevented, or favored, 400 bp LacI-mediated DNA looping. Tethered particle motion measurements revealed that RNA polymerase paused longer at unlooped LacI obstacles or those barring entry to a loop than those barring exit from the loop. Enhanced dissociation of a LacI roadblock by the positive supercoiling generated ahead of a transcribing RNA polymerase within a torsion-constrained DNA loop may be responsible for this reduction in pause time. In support of this idea, RNA polymerase transcribed 6-fold more slowly through looped DNA and paused at LacI obstacles for 66% less time on positively supercoiled compared to relaxed templates, especially under increased tension (torque). Positive supercoiling propagating ahead of polymerase facilitated elongation along topologically complex, protein-coated templates.


Assuntos
DNA , Escherichia coli , DNA/genética , DNA/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/genética , DNA Super-Helicoidal/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon Lac , Repressores Lac/genética , Repressores Lac/metabolismo , Conformação de Ácido Nucleico
16.
Mol Microbiol ; 117(4): 871-885, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35049093

RESUMO

Escherichia coli RfaH abrogates Rho-mediated polarity in lipopolysaccharide core biosynthesis operons, and ΔrfaH cells are hypersensitive to antibiotics, bile salts, and detergents. Selection for rfaH suppressors that restore growth on SDS identified a temperature-sensitive mutant in which 46 C-terminal residues of the RNA polymerase (RNAP) ß' subunit are replaced with 23 residues carrying a net positive charge. Based on similarity to rpoC397, which confers a temperature-sensitive phenotype and resistance to bacteriophages, we named this mutant rpoC397*. We show that SDS resistance depends on a single nonpolar residue within the C397* tail, whereas basic residues are dispensable. In line with its mimicry of RfaH, C397* RNAP is resistant to Rho but responds to pause signals, NusA, and NusG in vitro similarly to the wild-type enzyme and binds to Rho and Nus factors in vivo. Strikingly, the deletion of rpoZ, which encodes the ω "chaperone" subunit, restores rpoC397* growth at 42°C but has no effect on SDS sensitivity. Our results suggest that the C397* tail traps the ω subunit in an inhibitory state through direct contacts and hinders Rho-dependent termination through long-range interactions. We propose that the dynamic and hypervariable ß'•ω module controls RNA synthesis in response to niche-specific signals.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Óperon , Fatores de Alongamento de Peptídeos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
17.
Transcription ; 12(4): 89-91, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34783633
18.
ACS Infect Dis ; 7(11): 2948-2952, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34613689

RESUMO

The tragic consequences of the COVID-19 pandemic have led to admirable responses by the global scientific community, including a profound acceleration in the pace of research and exchange of findings. However, this has had considerable costs of its own, as erroneous conclusions have propagated faster than researchers have been able to detect and correct them. We illustrate the specific misunderstandings that have resulted from reductionist approaches to the study of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp), which are but one instance of a regrettably growing trend in structural biology. Far from merely being cautionary tales about the conduct of scientific research, these errors have had significant practical impact, by hampering a correct understanding of RdRp structure and mechanism, its inhibition by nucleoside analogues such as remdesivir, and the discovery and characterization of such analogues. After correcting these misunderstandings, we close with several recommendations for a broader correction of the course of scientific research.


Assuntos
COVID-19 , RNA Viral , Antivirais , Biologia , Humanos , Pandemias , SARS-CoV-2
19.
Nucleic Acids Res ; 49(15): 8822-8835, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34352100

RESUMO

The catalytic subunit of SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) contains two active sites that catalyze nucleotidyl-monophosphate transfer (NMPylation). Mechanistic studies and drug discovery have focused on RNA synthesis by the highly conserved RdRp. The second active site, which resides in a Nidovirus RdRp-Associated Nucleotidyl transferase (NiRAN) domain, is poorly characterized, but both catalytic reactions are essential for viral replication. One study showed that NiRAN transfers NMP to the first residue of RNA-binding protein nsp9; another reported a structure of nsp9 containing two additional N-terminal residues bound to the NiRAN active site but observed NMP transfer to RNA instead. We show that SARS-CoV-2 RdRp NMPylates the native but not the extended nsp9. Substitutions of the invariant NiRAN residues abolish NMPylation, whereas substitution of a catalytic RdRp Asp residue does not. NMPylation can utilize diverse nucleotide triphosphates, including remdesivir triphosphate, is reversible in the presence of pyrophosphate, and is inhibited by nucleotide analogs and bisphosphonates, suggesting a path for rational design of NiRAN inhibitors. We reconcile these and existing findings using a new model in which nsp9 remodels both active sites to alternately support initiation of RNA synthesis by RdRp or subsequent capping of the product RNA by the NiRAN domain.


Assuntos
Nidovirales/enzimologia , Nucleotídeos/metabolismo , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/metabolismo , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Coenzimas/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Difosfatos/farmacologia , Difosfonatos/farmacologia , Guanosina Trifosfato/metabolismo , Manganês , Modelos Moleculares , Nidovirales/química , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Uridina Trifosfato/metabolismo
20.
mBio ; 12(3): e0142321, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34154407

RESUMO

The catalytic subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA-dependent RNA polymerase (RdRp) Nsp12 has a unique nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain that transfers nucleoside monophosphates to the Nsp9 protein and the nascent RNA. The NiRAN and RdRp modules form a dynamic interface distant from their catalytic sites, and both activities are essential for viral replication. We report that codon-optimized (for the pause-free translation in bacterial cells) Nsp12 exists in an inactive state in which NiRAN-RdRp interactions are broken, whereas translation by slow ribosomes and incubation with accessory Nsp7/8 subunits or nucleoside triphosphates (NTPs) partially rescue RdRp activity. Our data show that adenosine and remdesivir triphosphates promote the synthesis of A-less RNAs, as does ppGpp, while amino acid substitutions at the NiRAN-RdRp interface augment activation, suggesting that ligand binding to the NiRAN catalytic site modulates RdRp activity. The existence of allosterically linked nucleotidyl transferase sites that utilize the same substrates has important implications for understanding the mechanism of SARS-CoV-2 replication and the design of its inhibitors. IMPORTANCEIn vitro interrogations of the central replicative complex of SARS-CoV-2, RNA-dependent RNA polymerase (RdRp), by structural, biochemical, and biophysical methods yielded an unprecedented windfall of information that, in turn, instructs drug development and administration, genomic surveillance, and other aspects of the evolving pandemic response. They also illuminated the vast disparity in the methods used to produce RdRp for experimental work and the hidden impact that this has on enzyme activity and research outcomes. In this report, we elucidate the positive and negative effects of codon optimization on the activity and folding of the recombinant RdRp and detail the design of a highly sensitive in vitro assay of RdRp-dependent RNA synthesis. Using this assay, we demonstrate that RdRp is allosterically activated by nontemplating phosphorylated nucleotides, including naturally occurring alarmone ppGpp and synthetic remdesivir triphosphate.


Assuntos
Trifosfato de Adenosina/análogos & derivados , Antivirais/farmacologia , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Guanosina Tetrafosfato/farmacologia , SARS-CoV-2/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Domínio Catalítico/fisiologia , RNA-Polimerase RNA-Dependente de Coronavírus/genética , Humanos , Ribossomos/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...